ДИСКРЕТНАЯ МАТЕМАТИКА. ТЕКСТОВЫЕ ЗАДАЧИ

Олег Владимирович Червяков, к.ф.-м.н., ст. преподаватель кафедры мат. моделирования ОмГУ
При решении контрольных работ и прохождении выпускных и вступительных испы-таниях текстовые задачи представляют собой наибольшую сложность. Это обусловлено тем, что при решении таких задач требуется не только знания различных формул, а также умение смоделировать поставленную задачу. Последнее в свою очередь требует логиче-ского мышления и творческого подхода к задаче, чему в средней школе уделяется недос-таточное внимание.
Цель и задачи программы: выработать творческий подход к решению задач, повы-сить умение моделировать поставленную задачу, сформировать у учащихся общие подхо-ды к решению текстовых задач. Содержание программы:
блок-1 "Углубление базовых знаний по решению текстовых задач (указать дисциплину курса средней школы)", 22 часа;
блок-2 "Расширение предмет-ного кругозора по дискретной математике", 56 часов; блок-3 "Интеллектуальные игры и со-ревнования", 18 часов.
Программа блока-1 рассчитана на 3 дня по 2 часа для учащихся одной группы 9 класса. Программа поделена на три части. В начале каждой из частей проходит 20-ти ми-нутная лекция, а затем учащиеся самостоятельно, в группе или с помощью преподавателя решают предложенные задачи. Программа блока-2 включает в себя в первую очередь лек-ции и соответствующие им практические занятия необходимые для исследовательской деятельности учащихся по выбранным темам. Далее учащиеся разбиваются на бригады, каждая из которых работает в самостоятельно-консультационном режиме по выбранной теме.
Содержание лекционного курса программы следующее.
1. Теория множеств.
1.1. Понятия множество и элемент множества
1.2. Операции над множествами
1.3. Формулы включения и исключения
2. Комбинаторика
2.1. Перестановки
2.2. Сочетания
2.3. Размещения
3. Графы
3.1. Определения графа
3.2. Деревья, поиск остовного дерева
3.3. Изоморфизм графов
3.4. Инварианты графов, поиск инвариантов
3.5. Дерево минимальных расстояний. Его поиск
3.6. Циклы. Эйлеров и гамильтонов циклы. Поиск циклов.
3.7. Хроматическое число графа. Поиска хроматического числа.
3.8. Паросочетания графа. Поиск паросочетаний графа.
3.9. Независимость и покрытия графа. Поиск независимого множества и покрытия.
4. Теория игр
4.1. Выигрышные стратегии. Поиск выигрышной стратегии с конца
4.2. Симметричные игры
4.3. Игра "Ним" и подобные ей игры
4.4. Дерево игры
4.5. Матричные игры
4.6. Чистые и смешанные стратегии
Предполагаемые темы научно-исследовательских работ.
1. Хроматическое число карты Омской области
2. Критерий возможности раскраски карты в два и три цвета
3. Нахождение центра Омской области с точки зрения дорог
4. Нахождение минимального паросочетания дорог Омской области
5. Нахождение минимального покрытия дорог Омской области
6. Нахождение максимального независимого множества на карте Омской области
7. Минимальный обход районных центров Омской области
8. Построение дерева минимальных расстояний от Омска до районных центров Омской области
9. Игры, подобные игре "Ним"
10. Относительно честное отнимание денег с помощью теории игр

Расписание занятий в блоке-2.

День Тема занятия Часов
1 Лекция по теории множеств/ практика. 4
2 Лекция по комбинаторике/ практика, Работа бригад по выбранным темам 4
3 Лекция по теории графов. Работа бригад по выбранным темам 4
4 Лекция по теории графов/ практика, Работа бригад по выбранным темам 4
5 Лекция по теории игр/ практика, Работа бригад по выбранным темам 4
6 Работа бригад по выбранным темам 4
7 Работа бригад по выбранным темам 4
8 Работа бригад по выбранным темам 4
9 Работа бригад по выбранным темам 4
10 Работа бригад по выбранным темам 4
11 Работа бригад по выбранным темам 4
12 Подготовка работ к заключительной конференции 6
13 Заключительная научн.-практ. Конференция НОУ 6